Median and Mean

Example

1. Let $g(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq 1 \\ 2-x & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: Drawing g, we see that it is a triangle of height 1 and base 2 and so the area under g is 1 so $c=1$. Then, the CDF F is given by

$$
F(x)=\left\{\begin{array}{lll}
0 & x \leq 0 \\
\int_{0}^{x} t d t & 0 \leq x \leq 1 \\
\int_{0}^{1} t d t+\int_{1}^{x}(2-t) d t & 1 \leq x \leq 2 \\
\int_{0}^{1} t d t+\int_{1}^{2}(2-t) d t & 1 \leq x
\end{array}= \begin{cases}0 & x \leq 0 \\
x^{2} / 2 & 0 \leq x \leq 1 \\
\frac{-x^{2}+4 x-2}{2} & 1 \leq x \leq 2 \\
1 & 1 \leq x\end{cases}\right.
$$

The median is when $F(x)=\frac{1}{2}$ and setting them equal gives $x^{2} / 2=1 / 2$ or $x=1$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x^{2} d x+\int_{1}^{2} x(2-x) d x=\frac{1}{3}+\frac{2}{3}=1 .
$$

In this case, our mean and median are the same.

Problems

2. TRUE False It is possible for the mean for a discrete PDF to not exist.

Solution: Consider the distribution such that choosing 2^{n} has probability $\frac{1}{2^{n}}$. Then the mean doesn't exist, but this is a discrete PDF.
3. TRUE False Another name for the mean of a PDF is the expected value.
4. True FALSE For a discrete PDF, we can always choose the mean with nonzero probability.

Solution: Consider rolling a dice. The mean is 3.5 , which we cannot roll.
5. True FALSE For a discrete PDF, we can always choose the median with nonzero probability.

Solution: Again, consider the dice example. The median is 3.5.
6. True FALSE There exists a uniform distribution on all the real numbers.

Solution: We cannot make the total area 1.
7. Let $g(x)=\left\{\begin{array}{ll}x^{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{-1}^{1} x^{2} d x=\frac{2}{3}
$$

Therefore, we must have that $\frac{2}{3} c=1$ or $c=\frac{3}{2}$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq-1 \\
\int_{-1}^{x} 3 / 2 t^{2} d t & -1 \leq x \leq 1 \\
\int_{-1}^{1} 3 / 2 t^{2} d t & 1 \leq x
\end{array}= \begin{cases}0 & x \leq-1 \\
\frac{x^{3}+1}{2} & -1 \leq x \leq 1 \\
1 & 1 \leq x\end{cases}\right.
$$

The median is when $F(x)=1 / 2$ or when $x^{3}+1=1$ which is $x=0$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{1} 3 / 2 x^{3} d x=0
$$

since $3 / 2 x^{3}$ is an odd function. So again, the median and mean align.
8. Let $g(x)=\left\{\begin{array}{ll}x e^{-x^{2}} & 0 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{0}^{\infty} x e^{-x^{2}} d x
$$

u subbing with $u=-x^{2}$ gives us

$$
=\int_{0}^{-\infty} \frac{-e^{u}}{2} d u=\frac{1}{2} .
$$

Therefore, we must have that $\frac{1}{2} c=1$ or $c=2$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq 0 \\
\int_{0}^{x} 2 t e^{-t^{2}} d t & x \geq 0
\end{array}= \begin{cases}0 & x \leq 0 \\
1-e^{-x^{2}} & x \geq 0\end{cases}\right.
$$

The median is when $F(x)=1 / 2$ or when $1-e^{-x^{2}}=\frac{1}{2}$ which is $x=\sqrt{\ln 2}$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} 2 x^{2} e^{-x^{2}} d x
$$

9. Let $g(x)=\left\{\begin{array}{ll}e^{-x} & -1 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{-1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{-1} ^{\infty}=e
$$

So $e c=1$ and $c=1 / e$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq-1 \\
\int_{-1}^{x} 1 / e e^{-t} d t & x \geq-1
\end{array}=\left\{\begin{array}{ll}
0 & x \leq-1 \\
1-e^{-x} / e & x \geq-1
\end{array} .\right.\right.
$$

The median is when $F(x)=1 / 2$ or when $1-e^{-x} / e=\frac{1}{2}$ which is $x=\ln 2-1$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{\infty} x e^{-x} / e d x=\left.\left(-x e^{-x}-e^{-x}\right)\right|_{-1} ^{\infty} / e=(e-e) / e=0 .
$$

10. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & x \leq-1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{-\infty}^{-1} \frac{1}{x^{4}} d x=\left.\frac{-1}{3 x^{-3}}\right|_{-\infty} ^{-1}=\frac{1}{3}
$$

Therefore, $c(1 / 3)=1$ so $c=3$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
\int_{-\infty}^{x} \frac{3}{t^{4}} d t & x \leq-1 \\
1 & x \geq-1
\end{array}= \begin{cases}\frac{-1}{x^{3}} & x \leq-1 \\
0 & x \geq-1\end{cases}\right.
$$

The median is when $F(x)=1 / 2$ or when $-1 / x^{3}=1 / 2$ which is $x=-\sqrt[3]{2}$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{-1} \frac{3}{x^{3}} d x=\frac{-3}{2} .
$$

11. Let $g(x)=\frac{1}{1+x^{2}}$ for $x \geq 0$ and 0 otherwise. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\left.\arctan (x)\right|_{0} ^{\infty}=\frac{\pi}{2}
$$

Therefore, $\pi / 2 c=1$ and $c=2 / \pi$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq 0 \\
\int_{0}^{x} \frac{2}{\pi\left(1+t^{2}\right)} d t & x \geq 0
\end{array}=\left\{\begin{array}{ll}
0 & x \leq 0 \\
\frac{2}{\pi} \arctan (x) & x \geq 0
\end{array} .\right.\right.
$$

The median is when $F(x)=1 / 2$ or when $2 / \pi \arctan (x)=\frac{1}{2}$ which is $x=\tan (\pi / 4)=$ 1. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} \frac{2 x}{\pi\left(1+x^{2}\right)} d x=1 /\left.\pi \ln \left(1+x^{2}\right)\right|_{0} ^{\infty}=\infty
$$

so the mean does not exist.
12. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & 2 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{2}^{\infty} 1 / x^{4} d x=-1 /\left.\left(3 x^{3}\right)\right|_{2} ^{\infty}=1 / 24
$$

Therefore, $c / 24=1$ and $c=24$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq 2 \\
\int_{2}^{x} 24 / t^{4} d t & t \geq 2
\end{array}=\left\{\begin{array}{ll}
0 & x \leq 2 \\
1-8 / x^{3} & x \geq 2
\end{array} .\right.\right.
$$

The median is when $F(x)=1 / 2$ or when $1-8 / x^{3}=\frac{1}{2}$ which is $x=\sqrt[3]{16}$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{2}^{\infty} 24 / x^{3} d x=-12 /\left.x^{2}\right|_{2} ^{\infty}=3
$$

